Stimulation of Photosystem I Electron Transport by High Concentration of 3-(3,4-Dichlorophenyl)-1,1-dimethyl Urea in Uncoupled Chloroplasts.
نویسندگان
چکیده
The light saturated rate of photosystem I-dependent electron transport (ascorbate/dichlorophenol-indophenol --> methyl vilogen in presence of 1 micromolar 3-[3,4-dichlorophenyl]-1,1-dimethyl urea [DCMU]) was increased by a high concentration of DCMU added to broken and uncoupled chloroplasts isolated from pea (Pisum sativum). At 50 micromolar DCMU, the increase was around 50%. No stimulation was observed under limiting intensity of illumination, indicating that the relative quantum yield of electron transport was not affected by high DCMU. The light-saturated rate in coupled (to proton gradient formation) chloroplasts was unchanged by 50 micromolar DCMU, suggesting that the rate-limitation imposed by energy coupling was not affected. Using N,N,N',N'-tetramethyl-p-phenylene diamine as electron donor, essentially no DCMU stimulation of the rate was observed, indicating further that the electron donation at a site close to P700 was not affected by high DCMU. It is concluded that DCMU, in the range of 10 to 50 micromolar, affected the thylakoid membranes in such a way that the rate constant of electron donation by dichlorophenol-indophenol at the site prior to the site of energy coupling increased. Further observations that DCMU at 100 micromolar stimulated the rate in coupled chloroplasts indicated an additional DCMU action, presumably by uncoupling the chloroplasts from phosphorylation, as suggested by Izawa (Shibata et al., eds, Comprehensive Biochemistry and Biophysics of Photosynthesis, University Press, State College, Pennsylvania, pp 140-147, 1968). A scheme has been proposed for multiple sites of DCMU action on the electron transport system in chloroplasts.
منابع مشابه
Activity of the natural algicide, cyanobacterin, on angiosperms.
Cyanobacterin is a secondary metabolite produced by the cyanobacterium (blue-green alga) Scytonema hofmanni. The compound had previously been isolated and chemically characterized. It was shown to inhibit the growth of algae at a concentration of approximately 5 micromolar. Cyanobacterin also inhibited the growth of angiosperms, including the aquatic, Lemna, and terrestrial species such as corn...
متن کاملA Calcium-Selective Site in Photosystem II of Spinach Chloroplasts.
After acid-treatment of spinach (Spinacia oleracea) chloroplasts, various partial electron transport reactions are inactivated from 25 to 75%. Divalent cations in concentrations from 10 to 50 millimolar can partially restore electron transport rates. Two cation-specific sites have been found in photosystem II: one on the 3-(3,4-dichlorophenyl)-1, 1-dimethylurea-insensitive silicomolybdate pathw...
متن کاملThe effects of high concentrations of salts on photosynthetic electron transport in spinach (Spinacia oleracea) chloroplasts.
1. Photosynthetic electron transport from water to lipophilic Photosystem II acceptors was stimulated 3--5-fold by high concentrations (greater than or equal to 1 M) of salts containing anions such as citrate, succinate and phosphate that are high in the Hofmeister series. 2. In trypsin-treated chloroplasts, K3Fe(CN)6 reduction insensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea was strongly...
متن کاملOrganization of Electron Transport in Photosystem II of Spinach Chloroplasts According to Chelator Inhibition Sites.
The organization of electron transport in photosystem II of spinach (Spinacia oleracea) chloroplasts was studied by means of various chelators and uncouplers. The partial reactions used included H(2)O-->methyl viologen, H(2)O-->silicomolybdic acid H(2)O-->ferricyanide, and H(2)O-->dimethylbenzoquinone. Three types of chelator inhibition were found (a) inhibition common to all pathways and presu...
متن کاملPhotosynthesis and state transitions in mitochondrial mutants of Chlamydomonas reinhardtii affected in respiration.
Photosynthetic activities were analyzed in Chlamydomonas reinhardtii mitochondrial mutants affected in different complexes (I, III, IV, I + III, and I + IV) of the respiratory chain. Oxygen evolution curves showed a positive relationship between the apparent yield of photosynthetic linear electron transport and the number of active proton-pumping sites in mitochondria. Although no significant a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 68 6 شماره
صفحات -
تاریخ انتشار 1981